张明明,女,博士,教授,生物学博士后,硕士生导师。研究方向为统计遗传学、生物信息学。主要从事自身免疫性疾病中遗传变异介导的生物标记调控机制研究和多组学融合算法开发。研究成果发表在《Nucleic Acids Research》、《Genes and Immunity》、《Neuroscience》、《Proteomics》、《Neuroscience letters》、《Biochemical and Biophysical Research Communications》等国际学术期刊,发表SCI论文30余篇,其中第一作者(含并列)、通讯作者15篇,单篇影响因子最高14.9。主持国家自然科学基金青年项目1项、黑龙江博士后启动金1项、黑龙江省教育厅优秀青年教师支持计划1项、黑龙江省教育科学“十三五”规划重点课题1项,黑龙江省高等教育教学改革项目1项,参与国家自然科学基金3项,黑龙江省自然基金项目2项。主编专著1部,主讲课程包括《概率论与数理统计》、《生物统计》、《高等多元统计》、《信息论与随机过程》、《系统遗传学》、《概率论》、《商业与经济统计学》等多门课程,发表教学论文10余篇,其中近三年发表4篇。
E-mail:zhangmingming@hrbmu.edu.cn
学术兼职:
中国生物工程学会计算生物学与生物信息学专业委员会委员
主持参与课题:
1.主持国家自然科学基金青年项目:基于生物通路的类风湿性关节炎相关风险因子识别及其调控机制研究,81601422,2017.01-2019.12。
2.主持黑龙江省博士后启动金项目。
3.主持黑龙江省教育厅优秀青年教师支持计划项目:基于遗传-蛋白图谱揭示类风湿性关节炎风险变异位点调控机制及平台开发,YQJH2023036,2024.01-2026.12。
4.主持黑龙江省教育科学“十三五”规划重点课题:“双一流”背景下统计遗传学应用性创新人才培养模式探索与实践,GBB1317070,2018.03-2020.03。
5.主持黑龙江省高等教育教学改革课题:新医科背景下统计遗传学金课建设探索与实践,SJGY20210534,2022.06-2024.06。
6.参与国家自然科学基金青年项目:结合疾病易感位点挖掘策略与目标区域测序技术识别中国人群炎症性肠病的致病变异,81600403,2017.01-2019.12。
7.参与国家自然科学基金重大研究计划:基于基因组大数据的类风湿性关节炎发病风险预警研究,91746113,2018.01-2020.12。
8.参与国家自然科学基金重大研究计划:重大疾病基因组遗传大数据资源平台建设及其示范应用,92046018,2021.01-2021.12。
指导学生获奖及创新创业项目:
(1)国际一等奖(指导教师),2023年,美国大学生数学建模竞赛
(2)黑龙江省二等奖(指导教师),2022年,东北三省数学建模竞赛
(3)黑龙江省一等奖(指导教师),2021年,全国大学生数学建模竞赛
(4)黑龙江省三等奖(指导教师),2013年,全国大学生数学建模竞赛
(5)黑龙江省创新创业项目(指导教师),2021年,黑龙江省教育厅
发表论文:
近年发表SCI论文30余篇,仅列部分(#第一作者;*通讯作者)。
(1) Haiyan Chen#, Jing Xu#, Siyu Wei#, Zhe Jia#, Chen Sun, Jingxuan Kang, Xuying Guo, Nan Zhang, Junxian Tao, Yu Dong, Chen Zhang, Yingnan Ma, Wenhua Lv, Hongsheng Tian, Shuo Bi, Hongchao Lv, Chen Huang, Fanwu Kong, Guoping Tang, Yongshuai Jiang*,Mingming Zhang*, RABC: Rheumatoid Arthritis Bioinformatics Center, Nucleic Acids Research, 2022, D1(51): D1381-D1387
(2) Guo F#, Kang J#, Xu J#, Wei S#, Tao J, Dong Y, Ma Y, Tian H, Guo X, Bi S, Zhang C, Lv H, Shang Z, Jiang Y*,Zhang M*. Genome-wide identification of m6A-associated single nucleotide polymorphisms in complex diseases of nervous system. Neurosci Lett. 2023 Nov 20;817:137513.
(3) Kang J#, Wei S#, Jia Z#, Ma Y#, Chen H, Sun C, Xu J, Tao J, Dong Y, Lv W, Tian H, Guo X, Bi S, Zhang C, Jiang Y*, Lv H*,Zhang M*. Effects of genetic variation on the structure of RNA and protein. Proteomics. 2024 Mar;24(6):e2300235.
(4)Xu J, Chen H, Sun C, Wei S, Tao J, Jia Z, Chen X, Lv W, Lv H, Tang G, Jiang Y*,Zhang M*. Epigenome-wide methylation haplotype association analysis identified HLA-DRB1, HLA-DRB5 and HLA-DQB1 as risk factors for rheumatoid arthritis. Int J Immunogenet. 2023 Dec;50(6):291-298.
(5)Guoping Tang, Chen Sun, Hongchao Lv,Mingming Zhang*, Yongshuai Jiang*, Jing Xu*,Identification of novel meQTLs strongly associated with rheumatoid arthritis by large scale epigenome wide analysis, FEBS Open Bio, 2022, 12(12): 2227-2235
(6)Zhang Mingming#, Mu Hongbo#,Shang Zhenwei#, Kang Kai#, Lv Hongchao, Duan Lian, Li Jin, Chen Xinren, Teng Yanbo, Jiang Yongshuai*, Zhang Ruijie*, Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease, Neuroscience, 2017, Jan 6;340:398-410.
(7)Zhang Mingming#, Jiang Yongshuai#*, Lv Hongchao#, Mu Hongbo#, Li Jin, Shang Zhenwei, Zhang Ruijie*, Pathway-based association analysis of two genome-wide screening data identifies rheumatoid arthritis-related pathways, Genes Immun, 2014, 15(7):487-94.
(8)Zhang M#*, Mu H, Zhang R, Liu S, Lee I*, Genome-Wide Pathway Analysis of Microarray Data Identifies Risk Pathways Related to Salt Stress in Arabidopsis Thaliana. Interdisciplinary Sciences Computational Life Sciences, 2018 Sep;10(3):566-571.
(9)Zhang Mingming#, Mu Hongbo#, Lv Hongchao#, Duan Lian#, Shang Zhenwei#, Li Jin, Jiang Yongshuai, Zhang Ruijie*, Integrative analysis of genome-wide association studies and gene expression analysis identifies pathways associated with rheumatoid arthritis, Oncotarget, 2016Feb 23;7(8):8580-9.
(10) Teng Yanbo#, Ding Yanjun#,Zhang Mingming#, Chen Xinren, Wang Xizi, Yu Hang, Liu Chonghui, Lv Hongchao*, Zhang Ruijie*. Genome-wide haplotype association study identifies risk genes for non-small cell lung cancer. J Theor Biol, 2018. 456: p. 84-90.
(11) Jiang Yongshuai# *,Zhang Mingming#, Guo Xiaodan#, Zhang Ruijie*, Enrichment Disequilibrium: A novel approach for measuring the degree of enrichment after gene enrichment test,2012, Aug 3;424(3):563-7.
(12)Shang Zhenwei, Sun Wenjing,Zhang Mingming, Xu Lidan, Jia Xueyuan, Zhang Ruijie*, Fu Songbin*. Identification of key genes associated with multiple sclerosis based on gene expression data from peripheral blood mononuclear cells. PeerJ, 2020, 8:e8357.
(13) Sun C#, Xu J#, Tao J#, Dong Y, Chen H, Jia Z, Ma Y,Zhang M, Wei S, Tang G, Lyu H, Jiang Y*. Mobile-Based and Self-Service Tool (iPed) to Collect, Manage, and Visualize Pedigree Data: Development Study. JMIR Form Res. 2022 Jun 23;6(6):e36914.
(14) Lv Wenhua#, Zheng Jiajia#, Luan Meiwei#, Shi Miao#, Zhu Hongjie#,Zhang Mingming, Lv Hongchao, Shang Zhenwei, Duan Lian, Zhang Ruijie*, Jiang Yongshuai*, Comparing the evolutionary conservation between human essential genes, human orthologs of mouse essential genes and human housekeeping genes, Briefings in Bioinformatics, 2015 Nov;16(6):922-31.
(15) Wei S#, Tao J#, Xu J#, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y,Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TE, Jiang Y*, Ten Years of EWAS. Adv Sci (Weinh). 2021 Oct;8(20):e2100727.
(16) Xu J#, Zhao L#, Liu D#, Hu S#, Song X, Li J, Lv H, Duan L,Zhang M, Jiang Q, Liu G, Jin S, Liao M,Zhang M, Feng R, Kong F*, Xu L*, Jiang Y*. EWAS: epigenome-wide association study software 2.0. Bioinformatics. 2018 Aug 1;34(15):2657-2658.
(17) Liu D#, Zhao L#, Wang Z#, Zhou X#, Fan X, Li Y, Xu J, Hu S, Niu M, Song X, Li Y, Zuo L, Lei C, Zhang M, Tang G, Huang M, Zhang N, Duan L, Lv H,Zhang M, Li J, Xu L, Kong F*, Feng R*, Jiang Y*. EWASdb: epigenome-wide association study database. Nucleic Acids Res. 2019 Jan 8;47(D1):D989-D993.